Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model
نویسندگان
چکیده
MOTIVATION The availability of modern sequencing techniques has led to a rapid increase in the amount of reconstructed metabolic networks. Using these models as a platform for the analysis of high throughput transcriptomic, proteomic and metabolomic data can provide valuable insight into conditional changes in the metabolic activity of an organism. While transcriptomics and proteomics provide important insights into the hierarchical regulation of metabolic flux, metabolomics shed light on the actual enzyme activity through metabolic regulation and mass action effects. Here we introduce a new method, termed integrative omics-metabolic analysis (IOMA) that quantitatively integrates proteomic and metabolomic data with genome-scale metabolic models, to more accurately predict metabolic flux distributions. The method is formulated as a quadratic programming (QP) problem that seeks a steady-state flux distribution in which flux through reactions with measured proteomic and metabolomic data, is as consistent as possible with kinetically derived flux estimations. RESULTS IOMA is shown to successfully predict the metabolic state of human erythrocytes (compared to kinetic model simulations), showing a significant advantage over the commonly used methods flux balance analysis and minimization of metabolic adjustment. Thereafter, IOMA is shown to correctly predict metabolic fluxes in Escherichia coli under different gene knockouts for which both metabolomic and proteomic data is available, achieving higher prediction accuracy over the extant methods. Considering the lack of high-throughput flux measurements, while high-throughput metabolomic and proteomic data are becoming readily available, we expect IOMA to significantly contribute to future research of cellular metabolism.
منابع مشابه
Large-scale metabolome analysis and quantitative integration with genomics and proteomics data in Mycoplasma pneumoniae.
Systems metabolomics, the identification and quantification of cellular metabolites and their integration with genomics and proteomics data, promises valuable functional insights into cellular biology. However, technical constraints, sample complexity issues and the lack of suitable complementary quantitative data sets prevented accomplishing such studies in the past. Here, we present an integr...
متن کاملIntegrating Transcriptomics with Metabolic Modeling Predicts Biomarkers and Drug Targets for Alzheimer's Disease
Accumulating evidence links numerous abnormalities in cerebral metabolism with the progression of Alzheimer's disease (AD), beginning in its early stages. Here, we integrate transcriptomic data from AD patients with a genome-scale computational human metabolic model to characterize the altered metabolism in AD, and employ state-of-the-art metabolic modelling methods to predict metabolic biomark...
متن کاملIntegrating quantitative proteomics and metabolomics in a cellular model of diabetic retinopathy
Diabetic retinopathy is the leading cause of visual loss in individuals under the age of 55. Most investigations into the pathogenesis of diabetic retinopathy have been concentrated on the neural retina since this is where clinical lesions are manifested. Recently, however, various abnormalities in the structural and secretory functions of retinal pigment epithelium that are essential for neuro...
متن کاملGenome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications
Background: A genome-scale metabolic network model (GEM) is a mathematical representation of an organism’s metabolism. Today, GEMs are popular tools for computationally simulating the biotechnological processes and for predicting biochemical properties of (engineered) strains.Objectives: In the present study, we have evaluated the predictive power of two ...
متن کاملA novel approach for determining environment-specific protein costs: the case of Arabidopsis thaliana
MOTIVATION Comprehensive understanding of cellular processes requires development of approaches which consider the energetic balances in the cell. The existing approaches that address this problem are based on defining energy-equivalent costs which do not include the effects of a changing environment. By incorporating these effects, one could provide a framework for integrating 'omics' data fro...
متن کامل